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Abstract. In this article, we adopt an integral type contraction to find fixed point results for four self mappings,

which are weakly compatible in S-metric spaces. For this purpose, we use (E.A) / (CLR) - property alternatively.
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1. INTRODUCTION

In 1986, the notion of compatibility was introduced by Gerald Jungck [3] as a generalization

of commutative property. Later on, Jungck and Rhoades [4] came up with the idea of weak

compatibility of mappings. They also proved that a pair of mappings which is compatible is

always weakly compatible, but the other way not around. Aamri and Moutawakil [1], on the

other hand, provided a new idea of (E.A) property in 2002. By applying this, a numerous results

in fixed point theory have been established. As an alternative to (E.A) property, Sintunavarat

and Kumam [9] recently introduced common limit in the range property, simply noted by (CLR)
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property, because of which the range of the mapping need not be closed for proving fixed point

theorems.

In 2006, Z.Mustafa and B.sims [6] proposed G-metric space as an alternative and more

appropriate generalization of metric spaces. Recently, S.Sedghi et al. [7] further expanded this

concept and proposed a new class of metric spaces, that is, an S-metric space. Numerous fixed

point results existing in the literature are inherently viable in S-metric spaces, as can be seen.

The study of fixed points with integral type contractive condition has gotten a lot of attention in

recent years. Certain existence outcomes in fixed point theory for a single mapping of a complete

metric space with integral type inequality were shown by Branciari [2]. He proved the presence

of a single fixed point of a self map on a complete metric space that meets a general integral

type contractive condition, thereby generalising the Banach contraction principle. P.Vijayaraju et

al.[10], on the other hand, found fixed point solutions for a pair of mappings with an integral

type contraction. J.Kumar [5] extended these results to four self mappings with (E.A) and (CLR)

properties. For this purpose, an integral type contraction was applied.

Inspired by the work of several authors, (see, e.g. [2], [5] and [10]), we prove certain new

fixed point theorems for four self maps with pairwise (E.A) and (CLR) properties. In fact,we

further expand and validate the findings of J.Kumar to S-metric spaces in this work. All of our

assertions are supported by befitting examples.

2. PRELIMINARIES

Definition 2.1. [7] A function S: X3→ [0,∞) where X is a nonempty set is said to be an S-metric

if for each υ ,ν ,ω, l ∈ X ,

(1) S(υ ,ν ,ω) = 0 iff υ = ν = ω ,

(2) S(υ ,ν ,ω)≤ S(υ ,υ , l)+S(ν ,ν , l)+S(ω,ω, l).

The pair (X ,S) called an S-metric space.

Example 2.2. [8] Let X = R and S : R×R×R→ [0,∞) be a function defined by S(υ ,ν ,ω) =

|υ−ω|+ |ν−ω| for all υ ,ν ,ω ∈ R. Then S is an S-metric.

Lemma 2.3. [7] Let X be an S-metric space. Then for all υ ,ν ∈ X , S(υ ,υ ,ν) = S(ν ,ν ,υ).
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Lemma 2.4. [7] Let X be an S-metric space. If {υn} and {νn} are two sequences such that

υn→ υ and νn→ ν , then S(υn,υn,νn)→ S(υ ,υ ,ν).

Definition 2.5. [7] A sequence {υn} is an S-metric space X is said to converge to some υ in X if

and only if limn→∞ S(υn,υn,υ) = 0. In this case we write limn→∞ υn = υ .

Definition 2.6. Let X be an S-metric space. Then two mappings P and Q defined on X are said

to

(1) be weakly compatible [4], if υ ∈ X , Pυ = Qυ implies PQυ = QPυ .

(2) satisfy property (E.A) [1], if there exists a sequence {υn} in X such that lim
n→∞

Pυn = lim
n→∞

Qυn =

υ ,υ ∈ X .

(3) satisfy the common limit in the range of P (CLRP) property [9], if there exists a sequence

{υn} in X such that lim
n→∞

Pυn = lim
n→∞

Qυn = Pυ , υ ∈ X .

Example 2.7. Let X = R+ and let the mappings P and Q : X → X be defined by Pυ = 2+υ2

and Qυ = 2υ +1 for all υ ∈ X . Let the S-metric, S: X3→ [0,∞) be defined as in Example 2.2.

Consider the sequence υn =
1

n
√

n ,n ∈ N. Then

Pυn = 2+
1
n3 and Qυn = 21/n

√
n +1,

S(Pυn,Pυn,2) = S
(

2+
1
n3 ,2+

1
n3 ,2

)
=

2
n3 → 0 as n→ ∞,

S(Qυn,Qυn,2) = S
(

21/n
√

n +1,21/n
√

n +1,2
)

= 2|21/n
√

n−1| → 0 as n→ ∞.

Therefore, lim
n→∞

Pυn = lim
n→∞

Qυn = 2, which implies (P,Q) satisfies (E.A) property.

Example 2.8. Let X = R+ and let the mappings P and Q : X → X be defined by Pυ = eυ and

Qυ = υ2 + 1. Let the S-metric, S: X3 → [0,∞) be defined as in Example 2.2. Consider the

sequence υn =
1
n ,n ∈ N.Then

Pυn = e1/n and Qυn = 1+
1
n2 ,

S(Pυn,Pυn,1) = S
(

e1/n,e1/n,1
)
= 2|e1/n−1| → 0 as n→ ∞,

S(Qυn,Qυn,1) = S
(

1+
1
n2 ,1+

1
n2 ,1

)
=

2
n2 → 0 as n→ ∞.
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Therefore, lim
n→∞

Pυn = lim
n→∞

Qυn = 1 = P(0), which implies (P,Q) satisfies the (CLRP)-property.

Throughout this paper, λ : R+→ R+ is a non-negative, lebesgue integrable function which

is summable and such that
∫

ε

0 λ (ϑ)dϑ > 0 whenever ε > 0 and ξ : [0,∞)→ [0,∞) is a right

continuous function such that ξ (0) = 0 and ξ (t)< t for t > 0.

3. MAIN RESULTS

Theorem 3.1. Let X be an S-metric space and F,G,P and Q be four self maps defined on X

satisfying the following conditions,

(1)

∫ S(Fx,Fx,Gy)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(x,y)

0
λ (ϑ)dϑ

)
for all x,y ∈ X where

µ(x,y) = max{S(Qx,Qx,Py),S(Qx,Qx,Fx),S(Py,Py,Gy),

1
2
[S(Qx,Qx,Gy)+S(Py,Py,Fx)]},

(3.1.1)

(2) F(X)⊆ P(X), G(X)⊆ Q(X) and Q(X) or P(X) is closed,

(3)The pairs (F,Q) or (G,P) satisfy property (E.A),

(4) The pairs (F,Q) and (G,P) are weakly compatible.

Then F,G,P and Q have a unique common fixed point in X.

Proof. Firstly, we assume that the pair (F,Q) satisfies property (E.A) .

Therefore there must be a sequence {xn} in X such that

(3.1.2) lim
n→∞

Fxn = lim
n→∞

Qxn = r, r ∈ X .

Given that F(X)⊆ P(X).Therefore Fxn = Pyn for each n, for some sequence {yn} in X. Hence

(3.1.3) lim
n→∞

Pyn = r.

Now, we will prove that lim
n→∞

Gyn = r.

To do this, we put x = xn, y = yn in (3.1.1).Then
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∫ S(Fxn,Fxn,Gyn)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(xn,yn)

0
λ (ϑ)dϑ

)
for all n ∈ N where,

µ(xn,yn) = max{S(Qxn,Qxn,Pyn),S(Qxn,Qxn,Fxn),S(Pyn,Pyn,Gyn),

1
2
[S(Qxn,Qxn,Gyn)+S(Pyn,Pyn,Fxn)]}.

On letting n→ ∞ and using (3.1.2) and (3.1.3), we will have

lim
n→∞

µ(xn,yn) = lim
n→∞

max
{

0,0,S(r,r,Gyn),
1
2

S(r,r,Gyn)

}
= lim

n→∞
S(r,r,Gyn).

Hence

lim
n→∞

∫ S(Fxn,Fxn,Gyn)

0
λ (ϑ)dϑ ≤ lim

n→∞
ξ

(∫
µ(xn,yn)

0
λ (ϑ)dϑ

)
= lim

n→∞
ξ

(∫ S(r,r,Gyn)

0
λ (ϑ)dϑ

)
.

This implies

lim
n→∞

∫ S(r,r,Gyn)

0
λ (ϑ)dϑ ≤ lim

n→∞
ξ

(∫ S(r,r,Gyn)

0
λ (ϑ)dϑ

)
< lim

n→∞

∫ S(r,r,Gyn)

0
λ (ϑ)dϑ , if lim

n→∞
S(r,r,Gyn) 6= 0,

a contradiction.

Therefore we must have lim
n→∞

S(r,r,Gyn) = 0, which implies

(3.1.4) lim
n→∞

Gyn = r.

Suppose Q(X) is closed.

Therefore by (3.1.2), we can find a point u ∈ X such that

(3.1.5) r = Qu.

We now claim that Fu = r.

To prove this, we put x = u, y = yn in (3.1.1). Then
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∫ S(Fu,Fu,Gyn)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(u,yn)

0
λ (ϑ)dϑ

)
for all for all n ∈ N where

µ(u,yn) = max {S(Qu,Qu,Pyn),S(Qu,Qu,Fu),S(Pyn,Pyn,Gyn),

1
2
[S(Qu,Qu,Gyn)+S(Pyn,Pyn,Fu)]}.

On letting n→ ∞ and using (3.1.3),(3.1.4) and (3.1.5)

lim
n→∞

µ(u,yn) = max
{

0,S(r,r,Fu),0,
1
2

S(r,r,Fu)
}

= S(r,r,Fu).

Therefore,

∫ S(Fu,Fu,r)

0
λ (ϑ)dϑ = lim

n→∞

∫ S(Fu,Fu,Gyn)

0
λ (ϑ)dϑ

≤ ξ

(∫ S(r,r,Fu)

0
λ (ϑ)dϑ

)
<
∫ S(r,r,Fu)

0
λ (ϑ)dϑ , if S(Fu,Fu,r) 6= 0,

a contradiction and hence we must have S(Fu,Fu,r) = 0.

This implies

(3.1.6) Fu = r.

From (3.1.5) and (3.1.6),

(3.1.7) r = Qu = Fu.

(3.1.8) Since r ∈ F(X)⊆ P(X),r = Pv for some element v in X .

We now prove that Gv = r.

To prove this,we put x = u, y = v in (3.1.1). Then
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∫ S(Fu,Fu,Gv)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(u,v)

0
λ (ϑ)dϑ

)
where

µ(u,v) = max{S(Qu,Qu,Pv),S(Qu,Qu,Fu),S(Pv,Pv,Gv),

1
2
[S(Qu,Qu,Gv)+S(Pv,Pv,Fu)]}

= max{0,0,S(r,r,Gv),
1
2

S(r,r,Gv)}

= S(r,r,Gv), by using (3.1.7) and (3.1.8)

Hence, ∫ S(r,r,Gv)

0
λ (ϑ)dϑ ≤ ξ

(∫ S(r,r,Gv)

0
λ (ϑ)dϑ

)
<
∫ S(r,r,Gv)

0
λ (ϑ)dϑ , if S(r,r,Gv) 6= 0

which is a contradiction, Hence

(3.1.9) r = Gv.

From (3.1.8) and (3.1.9),

(3.1.10) r = Pv = Gv.

Similarly we can prove that (3.1.7) and (3.1.10) hold whenever P(X) is closed. It is given that

(F,Q) and (G,P) are weakly compatible.

Therefore from (3.1.7) and (3.1.10),we have QFu = FQu and PGv = GPv.

This implies Qr = Fr and Pr = Gr.

We now prove that Gr = r.

This can be done by taking x = u and y = r in (3.1.1) and using (3.1.7) and (3.1.10). Then we get∫ S(Fu,Fu,Gr)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(u,r)

0
λ (ϑ)dϑ

)
where

µ(u,r) = max{S(Qu,Qu,Pr),S(Qu,Qu,Fu),S(Pr,Pr,Gr),

1
2
[S(Qu,Qu,Gr)+S(Pr,Pr,Fu)]}
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= max{S(r,r,Gr),0,0,
1
2
[S(r,r,Gr)+S(Gr,Gr,r)]}

= max{S(r,r,Gr),
1
2
[S(r,r,Gr)+S(Gr,Gr,r)]}

= S(r,r,Gr).

Then, ∫ S(r,r,Gr)

0
λ (ϑ)dϑ ≤ ξ

(∫ S(r,r,Gr)

0
λ (ϑ)dϑ

)
<
∫ S(r,r,Gr)

0
λ (ϑ)dϑ , if S(r,r,Gr) 6= 0,

a contradiction and hence Gr = r.

This implies Qr = Gr = r.

Similarly,it is easy to prove that Pr = Fr = r.

This implies Pr = Fr = Qr = Gr = r.

Therefore, r is a common fixed point of F,G,P and Q.

In order to establish the uniqueness of ’r’, assume that r∗(r 6= r∗) be other common fixed point

of F,G,P and Q.

Then Pr∗ = Fr∗ = Qr∗ = Gr∗ = r∗.

By (3.1.1), we will get∫ S(r,r,r∗)

0
λ (ϑ)dϑ =

∫ S(Fr,Fr,Gr∗)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(r,r∗)

0
λ (ϑ)dϑ

)
where,

µ(r,r∗) = max{S(Qr,Qr,Pr∗),S(Qr,Qr,Fr),S(Pr∗,Pr∗,Gr∗),

1
2
[S(Qr,Qr,Gr∗)+S(Pr∗,Pr∗,Fr)]}

= max{S(r,r,r∗), 1
2
[S(r,r,r∗)+S(r∗,r∗,r)]}

= S(r,r,r∗).

Then, ∫ S(r,r,r∗)

0
λ (ϑ)dϑ ≤ ξ

(∫ S(r,r,r∗)

0
λ (ϑ)dϑ

)
<
∫ S(r,r,r∗)

0
λ (ϑ)dϑ .

This contradicts our assumption that r 6= r∗ and therefore we must have r = r∗.

Similarly the proof follows from the (E.A) property of (G,P). �
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Example 3.2. Suppose that X = [0,1] and the maps F,G,P and Q of X are defined by

F(x) = 0, P(x) =


0 if x = 0

1 if x ∈ (0,1],

G(x) =


0 if x = 0

1
10 if x ∈ (0,1],

Q(x) = x.

Let the S-metric on X be given as in Example 2.2. We take λ (ϑ) = 1 and ξ (t) = t
2 . Then the

inequality (3.1.1) will be

(3.2.1) S(Fx,Fx,Gy)≤ ξ (µ(x,y)) =
1
2

µ(x,y),

where µ(x,y) = max{S(Qx,Qx,Py),S(Qx,Qx,Fx),S(Py,Py,Gy),

1
2
[S(Qx,Qx,Gy)+S(Py,Py,Fx)]}.

Case I: If y = 0, then Fx = 0,Qx = x,Py = 0,Gy = 0.

Therefore, S(Fx,Fx,Gy) = S(0,0,0) = 0.

Hence, inequality (3.2.1) holds.

Case II: If y ∈ (0,1], then Py = 1,Gy = 1
10 ,Fx = 0,Qx = x.

Therefore, S(Fx,Fx,Gy) = S
(

0,0,
1

10

)
= 2

∣∣∣∣0− 1
10

∣∣∣∣= 1
5
.

S(Py,Py,Gy) = S
(

1,1,
1

10

)
= 2

∣∣∣∣1− 1
10

∣∣∣∣= 9
5
.

Therefore S(Fx,Fx,Gy) = 1
5 < 9

10 = 1
2S(Py,Py,Gy)≤ 1

2 µ(x,y).

Hence the inequality (3.2.1) holds in both the cases.

F(X) = {0} ⊆ {0,1}= P(X), G(X) = {0, 1
10} ⊆ [0,1] = Q(X) and Q(X) is closed. Also for the

sequence xn =
1
n3 ,n = 1,2, ...

Fxn = 0, Qxn =
1
n3 ,

S(Fxn,Fxn,0) = S(0,0,0) = 0 and

S(Qxn,Qxn,0) = S
(

1
n3 ,

1
n3 ,0

)
=

2
n3 → 0 as n→ ∞.
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Therefore, lim
n→∞

Fxn = lim
n→∞

Qxn = 0.

Thus the maps (F,Q) satisfy (E.A) property.

We can easily see that (F,Q) and (G,P) are weakly compatible.

Also, 0 is the only common fixed point of F,G,P and Q.

Corollary 3.3. Let X be an S-metric space and F,G and P be three self maps defined on X

satisfying the following conditions,

(1) ∫ S(Fx,Fx,Gy)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(x,y)

0
λ (ϑ)dϑ

)
for all x,y ∈ X where,

µ(x,y) = max{S(Px,Px,Py),S(Px,Px,Fx),S(Py,Py,Gy),

1
2
[S(Px,Px,Gy)+S(Py,Py,Fx)]},

(2) F(X)⊆ P(X), G(X)⊆ P(X) and P(X) is closed,

(3)The pairs (F,P) or (G,P) satisfy property (E.A),

(4) The pairs (F,P) and (G,P) are weakly compatible.

Then F,G and P have a unique common fixed point in X.

Proof. The proof follows by taking Q = P in Theorem 3.1. �

Corollary 3.4. Let (X,S) be an S-metric space and G and P be two self maps defined on X

satisfying the following conditions

(1) ∫ S(Gx,Gx,Gy)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(x,y)

0
λ (ϑ)dϑ

)
for all x,y ∈ X

where

µ(x,y) = max{S(Px,Px,Py),S(Px,Px,Gx),S(Py,Py,Gy),

1
2
[S(Px,Px,Gy)+S(Py,Py,Gx)]},

(2) G(X)⊆ P(X) and P(X) is closed,

(3) The pair (G,P) satisfies property (E.A),

(4) The pairs (G,P) is weakly compatible. Then G and P have a unique common fixed point in X.
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Proof. The proof follows by taking Q = P and F = G in Theorem 3.1. �

Theorem 3.5. Let X be an S-metric space and F,G,P and Q be four self maps defined on X

satisfying the following conditions

(1) ∫ S(Fx,Fx,Gy)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(x,y)

0
λ (ϑ)dϑ

)
for all x,y ∈ X where,

µ(x,y) = max{S(Qx,Qx,Py),S(Qx,Qx,Fx),S(Py,Py,Gy),

1
2
[S(Qx,Qx,Gy)+S(Py,Py,Fx)]},

(3.5.1)

(2) F(X)⊆ P(X) and G(X)⊆ Q(X) ,

(3) The pairs (F,Q) satisfy (CLRF) property or (G,P) satisfy (CLRG) property,

(4) The pairs (F,Q) and (G,P) are weakly compatible.

Then the maps F,G,P and Q have a unique common fixed point in X.

Proof. Firstly, we suppose that the pair (F,Q) satisfies (CLRF) property.

Therefore,there is a sequence {xn} in X such that

(3.5.2) lim
n→∞

Fxn = lim
n→∞

Qxn = Fz, z ∈ X .

It is given that F(X) ⊆ P(X) and therefore Fxn = Pyn for all n, for some sequence {yn} in

X .Then

(3.5.3) lim
n→∞

Pyn = Fz.

Now, we prove that lim
n→∞

Gyn = Fz.

This is done by taking x = xn, y = yn in (3.5.1).

Then, ∫ S(Fxn,Fxn,Gyn)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(xn,yn)

0
λ (ϑ)dϑ

)
for all n ∈ N, where,

µ(xn,yn) = max{S(Qxn,Qxn,Pyn),S(Qxn,Qxn,Fxn),S(Pyn,Pyn,Gyn),

1
2
[S(Qxn,Qxn,Gyn)+S(Pyn,Pyn,Fxn)]}.
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On letting n→ ∞ and using (3.5.2) and (3.5.3),

lim
n→∞

µ(xn,yn) = lim
n→∞

max{S(Fz,Fz,Gyn),
1
2

S(Fz,Fz,Gyn)}

= lim
n→∞

S(Fz,Fz,Gyn).

lim
n→∞

∫ S(Fz,Fz,Gyn)

0
λ (ϑ)dϑ = lim

n→∞

∫ S(Fxn,Fxn,Gyn)

0
λ (ϑ)dϑ

≤ lim
n→∞

ξ

(∫ S(Fz,Fz,Gyn)

0
λ (ϑ)dϑ

)
< lim

n→∞

∫ S(Fz,Fz,Gyn)

0
λ (ϑ)dϑ ,

if lim
n→∞

S(Fz,Fz,Gyn) 6= 0,

a contradiction. Therefore lim
n→∞

S(Fz,Fz,Gyn) = 0.

This implies

(3.5.4) lim
n→∞

Gyn = Fz.

(3.5.5) Since F(X)⊆ P(X),we will have Fz = Pv for some point v in X .

We claim that Gv = Fz.

To prove this,we put x = xn, y = v in (3.5.1). Then∫ S(Fxn,Fxn,Gv)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(xn,v)

0
λ (ϑ)dϑ

)
for all n ∈ N, where,

µ(xn,v) = max{S(Qxn,Qxn,Pv),S(Qxn,Qxn,Fxn),S(Pv,Pv,Gv),

1
2
[S(Qxn,Qxn,Gv)+S(Pv,Pv,Fxn)]}.

On letting n→ ∞ and using (3.5.2) and (3.5.5), we get

lim
n→∞

µ(xn,v) = max{S(Fz,Fz,Gv),
1
2

S(Fz,Fz,Gv)}

= S(Fz,Fz,Gv).



INTEGRAL TYPE CONTRACTIVE CONDITION ON S-METRIC SPACES 13

Therefore, ∫ S(Fz,Fz,Gv)

0
λ (ϑ)dϑ = lim

n→∞

∫ S(Fxn,Fxn,Gv)

0
λ (ϑ)dϑ

≤ ξ

(∫ S(Fz,Fz,Gv)

0
λ (ϑ)dϑ

)
<
∫ S(Fz,Fz,Gv)

0
λ (ϑ)dϑ , if lim

n→∞
S(Fz,Fz,Gv) 6= 0,

a contradiction.Hence

(3.5.6) Fz = Gv.

From (3.5.5) and (3.5.6), we have

(3.5.7) Gv = Pv = r(say).

We have GPv = PGv, as it is given that (G,P) is weakly compatible .

This implies

(3.5.8) Gr = Pr.

Since G(X)⊆ Q(X),by (3.5.7) there must be some u ∈ X such that

(3.5.9) r = Gv = Qu.

We claim that Fu = r. To prove this,we take x = u, y = v in (3.5.1).

Therefore ∫ S(Fu,Fu,Gv)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(u,v)

0
λ (ϑ)dϑ

)
where,

µ(u,v) = max{S(Qu,Qu,Pv),S(Qu,Qu,Fu),S(Pv,Pv,Gv),

1
2
[S(Qu,Qu,Gv)+S(Pv,Pv,Fu)]}.

On using (3.5.7) and (3.5.9)

µ(u,v) = max{S(r,r,Fu),
1
2

S(r,r,Fu)}

= S(Fu,Fu,r).
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Therefore,

∫ S(Fu,Fu,r)

0
λ (ϑ)dϑ ≤ ξ

(∫ S(Fu,Fu,r)

0
λ (ϑ)dϑ

)
<
∫ S(Fu,Fu,r)

0
λ (ϑ)dϑ , if S(Fu,Fu,r) 6= 0,

a contradiction. Hence

(3.5.10) Fu = r.

From (3.5.9) and (3.5.10), Fu = Qu = r.

We have FQu = QFu, as it is given that (F,Q) is weakly compatible .

This further implies

(3.5.11) Fr = Qr.

We now prove that Fr = r. To do this,we take x = r, y = v in (3.5.1). Then

∫ S(Fr,Fr,Gv)

0
λ (ϑ)dϑ ≤ ξ

(∫
µ(r,v)

0
λ (ϑ)dϑ

)
where

µ(r,v) = max{S(Qr,Qr,Pv),S(Qr,Qr,Fr),S(Pv,Pv,Gv),

1
2
[S(Qr,Qr,Gv)+S(Pv,Pv,Fr)]}.

On (3.5.7) and (3.5.11),we get µ(r,v) = S(Fr,Fr,r).

Therefore,

∫ S(Fr,Fr,r)

0
λ (ϑ)dϑ ≤ ξ

(∫ S(Fr,Fr,r)

0
λ (ϑ)dϑ

)
<
∫ S(Fr,Fr,r)

0
λ (ϑ)dϑ if S(Fr,Fr,r) 6= 0,

a contradiction. Hence Fr = r.

similarly we can easily see that Gr = r.

From (3.5.8) and (3.5.11), Fr = Qr = Gr = Pr = r.

Hence r is the common fixed point of F,G,P and Q.

From the inequality (3.5.1), we can easily see that ’r’ is unique. �
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Example 3.6. Let X = [0,1) and define the maps F,G,P and Q of X by

F(x) = 0, G(x) =


0 if x ∈ [0, 1

2)

1
10 if x ∈ [1

2 ,1),

P(x) =


x if x ∈ [0, 1

2)

9
10 if x ∈ [1

2 ,1),
Q(x) = x.

Let the S-metric on X be given as in Example 2.2. We take λ (ϑ) = 1 and ξ (t) = t
2 . Then the

inequality (3.5.1) will be

(3.6.1) S(Fx,Fx,Gy)≤ ξ (µ(x,y)) =
1
2

µ(x,y),

where µ(x,y) = max{S(Qx,Qx,Py),S(Qx,Qx,Fx),S(Py,Py,Gy),

1
2
[S(Qx,Qx,Gy)+S(Py,Py,Fx)]}.

Case I: If y ∈ [0, 1
2), then Py = y,Gy = 0,Fx = 0,Qx = x.

Therefore, S(Fx,Fx,Gy) = s(0,0,0) = 0

Hence, inequality (3.6.1) holds.

Case II: If y ∈ [1
2 ,1),then Fx = 0,Qx = x,Py = 9

10 ,Gy = 1
10 .

Therefore, S(Fx,Fx,Gy) = S
(

0,0,
1
10

)
= 2

∣∣∣∣0− 1
10

∣∣∣∣= 1
5

S(Py,Py,Gy) = S
(

9
10

,
9

10
,

1
10

)
= 2

∣∣∣∣ 9
10
− 1

10

∣∣∣∣= 8
5

Hence, S(Fx,Fx,Gy) = 1
5 < 4

5 = 1
2S(Py,Py,Gy)≤ 1

2 µ(x,y).

Hence the inequality (3.6.1) holds in both the cases.

Also, F(X) = {0} ⊆ [0, 1
2)∪{

9
10}= P(X), GX) = {0, 1

10} ⊆ [0,1) = Q(X).

Also,neither P(X) nor Q(X) are closed, as can be seen.
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Also for the sequence xn =
1

n3/2 ,n = 1,2, ...,

Fxn = 0 , Qxn =
1

n3/2

S(Fxn,Fxn,0) = S(0,0,0) = 0,

S(Qxn,Qxn,0) = S
(

1
n3/2 ,

1
n3/2 ,0

)
=

2
n3/2 → 0 as n→ ∞.

Therefore, lim
n→∞

Fxn = lim
n→∞

Qxn = 0 = F(0).

Thus the maps (F,Q) satisfies (CLRF)-property.

We can easily see that the pairs (F,Q) and (G,P) are weakly compatible.

Also, ’0’ is the only common fixed point of F,G,P and Q.
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